LEARN ON SOURCE, REFINE ON TARGET: A MODEL TRANSFER LEARNING FRAMEWORK WITH RANDOM FORESTS 1 Learn on Source, Refine on Target: A Model Transfer Learning Framework with Random Forests

نویسندگان

  • Noam Segev
  • Maayan Harel
  • Shie Mannor
  • Ran El-Yaniv
چکیده

We propose novel model transfer-learning methods that refine a decision forest model M learned within a “source” domain using a training set sampled from a “target” domain, assumed to be a variation of the source. We present two random forest transfer algorithms. The first algorithm searches greedily for locally optimal modifications of each tree structure by trying to locally expand or reduce the tree around individual nodes. The second algorithm does not modify structure, but only the parameter (thresholds) associated with decision nodes. We also propose to combine both methods by considering an ensemble that contains the union of the two forests. The proposed methods exhibit impressive experimental results over a range of problems.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Image Classification via Sparse Representation and Subspace Alignment

Image representation is a crucial problem in image processing where there exist many low-level representations of image, i.e., SIFT, HOG and so on. But there is a missing link across low-level and high-level semantic representations. In fact, traditional machine learning approaches, e.g., non-negative matrix factorization, sparse representation and principle component analysis are employed to d...

متن کامل

Image alignment via kernelized feature learning

Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...

متن کامل

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

Automatically Mapped Transfer Between Reinforcement Learning Tasks via Three-Way Restricted Boltzmann Machines1

Reinforcement learning (RL) has become a popular framework for autonomous behaviour generation from limited feedback [2, 3], but RL methods typically learn tabula rasa. Transfer learning (TL) aims to improve learning by providing informative knowledge from a previous (source) task or tasks to a learning agent in a novel (target) task. If the agent is to be fully autonomous, it must: (1) automat...

متن کامل

Cross-Lingual Discriminative Learning of Sequence Models with Posterior Regularization

We present a framework for cross-lingual transfer of sequence information from a resource-rich source language to a resourceimpoverished target language that incorporates soft constraints via posterior regularization. To this end, we use automatically word aligned bitext between the source and target language pair, and learn a discriminative conditional random field model on the target side. Ou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015